
Problem Set 4

PhD Course in Probability and Statistics, Part I

Below, you find a number of exercises you can attempt during the course. They are not
assessed but complement the material in class. It is strongly recommended you try them without
looking at the solutions (which will be posted a little bit later).

Problems

1. Let X1, X2, . . . be a sequence of independent uniformly distributed random variables on the
interval [0, 1]. Prove (directly from definition) that min(X1, X2, . . . , Xn)→p 0 as n→∞.

2. Let {X1, X2, . . . } and {Y1, Y2, . . . } be uniformly integrable sequences of random variables.

(a) Prove that the sequence {Xn + Yn | n ≥ 1} is also uniformly integrable.

(b) Is {XnYn | n ≥ 1} also uniformly integrable?

3. For n ∈ N, let Xn be normally distributed with mean µn and variance σ2
n. Prove that the

family {Xn | n ≥ 1} is uniformly integrable if and only if both µn and σ2
n are uniformly

bounded.

4. Let X : Ω → {0, 1, 2, . . . } be a random variable with mean m = E(X) > 1 and variance
σ2 = Var(X) <∞. We define the Galton-Watson process Zn associated with X by,

Z0 = 1 and Zn =

Zn−1∑
j=1

Xj,n for n ≥ 1,

where Xj,n are independent random variables with the same distribution as X.

(a) Show that E(Zn) = mn.

(b) Prove that Mn = m−nZn is a martingale and that it converges to some random
variable M∞ almost surely.

(c) Show that E(Mn)→ E(M∞) = 1 (Hint show that the martingale is in L2). Conclude
that P(M∞ 6= 0) > 0.

(d) Now let X = 0 with probability 1
2 and X = 2 with probability 1

2 . Now m = E(X) = 1.
What can we say about M∞?

5. Consider the following sequence of random variables: X0 = a for some a ∈ (0, 1), and

Xn =

{
X2

n−1 with probability 1
2 ,

2Xn−1 −X2
n−1 with probability 1

2 ,

for n > 0. Prove that the sequence X0, X1, . . . converges almost surely. What are the
possible limits? For each of the possible limits L, determine

P( lim
n→∞

Xn = L).

1



6. Prove that if Xn is a non-negative, uniformly integrable submartingale for which Xn → 0
holds almost surely, as n→∞, then Xn = 0 (a.s.) for all n ∈ N.

7. Let p ∈ (0, 1) be fixed. We have an inexhaustible supply of red and green balls. In a
bucket, there is initially one red ball. In each time step, we take a random ball from the
bucket. With probability p, we replace it along with another ball of the same colour. With
probability q = 1−p we replace it and add a ball of the other colour. Let Xn be the number
of red balls in the n-th step. Prove that

Yn = (Xn − n/2) ·
(
n− 2q

n− 1

)−1
is a martingale.

8. In this exercise we will prove Lévy’s Upward Theorem and give an alternative proof to
Kolmogorov’s 0− 1 law.
Theorem. Let X ∈ L1(Ω,F ,P) and let Fn be a filtration. Define Mn = E(X) | Fn). Then
Mn is a martingale and

Mn → Y := E(X | F∞),

almost surely and in L1, where F∞ = σ (
⋃
Fn).

(a) Show that Mn is a martingale.

(b) Show that Mn is UI.

(c) Define measure µ1, µ2 on (Ω,F∞) by

µ1(F ) = E(Y ;F ) and µ2(F ) = E(M∞;F ).

Show that µ1 = µ2.

(d) Show that, almost surely, Y = M∞. (Hint: consider the expectation of the difference)

Recall Kolmogorov’s 0− 1 law:
Theorem. Let X1, X2, . . . be a sequence of independent random variables. Define

Tn = σ(Xn+1, Xn+2, . . . ) and T =
⋂
n

Tn.

Then, for all E ∈ T , we have P(E) is either 0 or 1.

(a) Use Lévy’s Upward Theorem with Y = IE and show that

X = E(X | F∞) = lim
n

E(X | Fn).

(b) Show that Y = P(E) and prove the theorem.
(Hint: Use independence of Fn and Tn)
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